ML.NET 튜토리얼 - 시작하기(10분)

모델 평가

평가 단계는 최고 성능의 알고리즘과 최고의 정확도를 보여주고 UI의 모델입니다.

모델을 사용해 보세요

모델 사용해보기 섹션에서 샘플 입력을 예측할 수 있습니다. 텍스트 상자는 데이터 세트의 첫 번째 데이터 줄로 미리 채워져 있지만 입력을 변경하고 예측 단추를 선택하여 다른 감정 예측을 시도할 수 있습니다.

이 경우 0은 부정적인 감정을 의미하고 1은 긍정적인 감정을 의미합니다.

Model Builder 평가 단계

참고: 모델의 성능이 좋지 않으면(예: 정확도가 낮거나 모델이 '1' 값만 예측하는 경우) 시간을 더 추가하고 다시 학습을 시도할 수 있습니다. 이것은 매우 작은 데이터 세트를 사용하는 샘플입니다. 프로덕션 수준 모델의 경우 더 많은 데이터와 교육 시간을 추가하고 싶을 것입니다.

모델을 평가하고 테스트한 후 이용 단계로 이동합니다.

ML.NET CLI가 최상의 모델을 선택하면 학습 요약이 표시됩니다. 학습 요약에서는 지정된 학습 시간에 탐색된 모델 수를 포함하여 탐색 프로세스에 대한 요약을 보여 줍니다.

ML.NET CLI 결과

상위 모델

ML.NET CLI는 성능이 가장 높은 모델에 대한 코드를 생성하지만 지정된 탐색 시간에 발견된 가장 높은 정확도로 상위 모델(최대 5개)도 표시합니다. AUC, AUPRC 및 F1 점수를 포함하여 상위 모델에 대한 여러 평가 메트릭을 표시합니다. 자세한 내용은 ML.NET 메트릭을 참조하세요.

계속